USULAN

PENELITIAN INTERNAL DOSEN

Program Studi Teknik Sipil Fakultas Sains dan Teknik

OPTIMALISASI PENGGUNAAN AMPAS TEBU (SACCHARUM OFFICINARUM) SEBAGAI MATERIAL KOMPOSIT DALAM PEMBUATAN PAVING BLOCK RAMAH LINGKUNGAN

Tim Peneliti Yulis Widhiastuti ST.,MT.

Dibiayai oleh:

Universitas Bojonegoro

Periode 1 atau 2 Tahun Anggaran 2023/2024

UNIVERSITAS BOJONEGORO

2024

HALAMAN PENGESAHAN

PROPOSAL PENELITIAN PENDANAAN PERGURUAN TINGGI

1. Judul Penelitian : Optimalisasi Penggunaan Saccharum

Officinarum Sebagai Material Komposit Dalam Pembuatan Paving Block Ramah

Lingkungan

2. Ketua Peneliti

a. Nama Peneliti : Yulis Widhiastuti., ST, MT.

b. NIDN : 07 1304 7601 c. Program Studi : Teknik Sipil

d. E-mail : yulisrifda@yahoo.co.id

e. Bidang Keilmuan : Transportasi dan Teknologi Bahan

3. Anggota Peneliti 1

a. Nama (Dosen/ : Alfia Nur Rahmawati., ST., MT.

Mahasiswa)

b. NIDN/NIM : 07 1901 9502c. Program Studi Teknik Sipil

d. E-mail : Alfiarahma64@gmail.com

e Bidang Keilmuan : Transportasi dan Teknologi Bahan

Anggota Peneliti 2

a. Nama (Dosen/ : Haidar Azzam Khoiri

Mahasiswa)

b. NIDN/NIMc. Program Studid. 22222011105d. Teknik Sipil

d. E-mail : haidarazzam004@gmail.com e Bidang Keilmuan : Transportasi dan Teknologi Bahan

4. Jangka Waktu Penelitian : 3 Bulan

6. Lokasi Penelitian : Kecamatan Bojonegoro

7. Dana Diusulkan : Rp. 3.500.000,00

Bojonegoro, 27 Mei 2024

Mengetahui,

Ketua LPPM Universitas Bojonegoro

Pengusul,

Laily Agustina Rahmawati, S.Si., M.Sc.

NIDN 07 2108 8601

Yulis Widhiastuti ST., MT.

NIDN. 07 1304 7601

KATA PENGANTAR

Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa atas segala

rahmat dan karunia-Nya sehingga kami dapat menyelesaikan proposal penelitian

ini dengan judul "Optimalisasi Penggunaan Saccharum Officinarum Sebagai

Material Komposit Dalam Pembuatan Paving Block Ramah Lingkungan".

Dalam penyusunan proposal penelitian ini, kami telah menerima bantuan,

bimbingan, dan dukungan dari berbagai pihak. Oleh karena itu, pada kesempatan

ini kami ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

1. Arief Januwarso, S.Sos, M.Si, Selaku Ketua Yayasan Suyitno Bojonegoro.

2. Dr. Tri Astuti Handayani, SH., MM., M.Hum., Selaku Rektor Universitas

Bojonegoro

3. Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM),

Universitas Bojonegoro

Kami menyadari bahwa proposal penelitian ini masih jauh dari sempurna. Oleh

karena itu, kami sangat mengharapkan kritik dan saran yang konstruktif dari semua

pihak demi perbaikan dan penyempurnaan penelitian ini di masa mendatang.

Akhir kata, kami berharap semoga proposal penelitian ini dapat memberikan

kontribusi yang berarti bagi pengembangan ilmu pengetahuan dan bermanfaat bagi

semua pihak yang berkepentingan.

Bojonegoro, 27 Mei 2024

Hormat kami,

Penulis

iii

DAFTAR ISI

HALAN	MAN PENGESAHAN	ii
PROPO	SAL PENELITIAN PENDANAAN PERGURUAN TINGGI	ii
KATA I	PENGANTAR	iii
DAFTA	AR ISI	iv
DAFTA	AR TABEL	vi
DAFTA	AR GAMBAR	vii
RINGK	ASAN	viii
BAB I.		1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan Penelitian	2
1.4	Manfaat Penelitian	3
BAB II		4
2.1	Pengertian Paving Block	4
2.2	Bahan Penyusun Paving Block	4
2.2	2.1 Semen Portland	5
2.2	2.2 Agregat	6
2.2	2.3 Pasir	7
2.2	2.4 Air	8
2.2	2.5 Abu Ampas Tebu	9
2.3	Syarat Mutu Paving Block	10
2.4	Klasifikasi Paving Block	11
2.5	Penelitian Terdahulu	12

BAB 3		1	7
3.1 I	Ruang	Lingkup Penelitian1	7
3.2	Analisa	a Data1	7
3.	2.1 Da	ıta Primer1	7
3.	2.2 Da	ıta Sekunder1	7
3.4 I	Pembu	atan Sample1	8
3.	4.1 Pe	rsiapan Bahan dan Alat1	8
3.	4.2 Pe	mbuatan Sample Paving Block1	8
3.5 I	Penguj	ian Sample1	9
BAB 4	·	2	21
4.1	Uji l	Properties Agregat Halus2	21
4.	1.1	Pengujian Kadar Lumpur Agregat Halus2	21
4.	1.2	Hasil Pengujian Kadar Organik	22
4.	1.3	Hasil Pengujian Perhitungan Analisa Ayakan Agregat Halus2	23
4.	1.4	Hasil Pengujian Berat Jenis dan Penyerapan Air Agregat Halus2	24
4.	1.5	Hasil Pengujian Barat Isi Lepas Gembur Dan Padat Agregat Halu 25	1S
4.	1.6	Hasil Pengujian Kadar Air Agregat Halus	26
4.2	Has	il Uji Kuat Tekan2	27
4.3	Perh	nitungan Hasil Mutu Paving Block3	6
4.4	Ana	lisis Hasil Uji4	0
BAB V	<i>7</i>	4	4
5.1	Kes	impulan4	4
5.2	Sara	ın4	4
DAFT	AR PU	JSTAKA4	5

DAFTAR TABEL

Tabel 2. 1 Sifat Fisik Abu Ampas Tebu Yang Telah Dibakar U	Jlang Pada
Suhu300°C, 400°C, 500°C Selama 2Jam	10
Tabel 2. 2 sifat-Sifat Fisika Paving Block	11
Tabel 3 1 Nilai Sd Untuk Berbagai Tingkat Pengendalian Mutu Pekerja	an Error!
Bookmark not defined.	
Tabel 3 2 Perkiraan Kuta Tekan Beton dengan Faktor Air Semen 0,50	Error!
Bookmark not defined.	
Tabel 3 3 Gradasi Pasir Error! Bookmark n	ot defined
Tabel 4. 1 Hasil Pengujian Kadar Lumpur Agregat Halus	21
Tabel 4. 2 Hasil Pengujian Kadar Organik Agregat Halus	22
Tabel 4. 3 Hasil Pengujian Analisa Ayakan Agregat Halus	23
Tabel 4. 4 Hasil Pengujian Berat Jenis Dan Penyerapan Agregat Halus.	25
Tabel 4. 5 Berat Isi Lepas Gembur Agregat Halus	26
Tabel 4. 6 Berat Isi Padat Agregat Halus	26
Tabel 4. 7 Hasil Kadar Air Agregat Halus Asli SNI 03-1971-1990	26
Tabel 4. 8 Hasil Kadar Air Agregat Halus SSD SNI 03-1971-1990	27
Tabel 4. 9 Hasil Pengujian Kuat Tekan Benda Uji Umur 7 Hari	27
Tabel 4. 10 Rata-rata Kuat Tekan Paving Block Pada Umur 7 Hari	28
Tabel 4. 11 Hasil Pengujian Kuat Tekan Benda Uji Umur 14 Hari	30
Tabel 4. 12 Rata-rata Kuat Tekan Paving Block Pada Umur 14 Hari	31
Tabel 4. 13 Hasil Pengujian Kuat Tekan Benda Uji Umur 21 Hari	33
Tabel 4. 14 Rata-rata Kuat Tekan Paving Block Pada Umur 21 Hari	34
Tabel 4. 15 Hasil Mutu Paving Umur 7 Hari	36
Tabel 4. 16 Hasil Mutu Paving Umur 14 Hari	38
Tabel / 17 Hasil Mutu Paving Umur 21 Hari	30

DAFTAR GAMBAR

Gambar 3. 1 Bagan Alur Penelitian	20
Gambar 4. 1 Hasil Uji Kadar Organik Pasir Lokal	23
Gambar 4. 2 Grafik Gradasi No. 2 (Pasir Sedang)	24
Gambar 4. 3 Grafik Kuat Tekan Paving Umur 7 Hari	30
Gambar 4. 4 Grafik Kuat Tekan Paving Umur 14 Hari	33
Gambar 4. 5 Grafik Kuat Tekan Paving Umur 21 Hari	36

RINGKASAN

Berawal dari adanya permasalahan yang timbul ditengah-tengah masyarakat khusunya pedagang es tebu yang kesusahan dalam mengelola ampas tebu yang dihasilkan dari pemerasan sari atau airnya. Dari masalah tersebut peneliti melakukan upaya optimalisasi limbah ampas tebu ini. Limbah ampas tebu sendiri mengandung zat yang ternyata dapat dimanfaatkan sebagai subsitusi campuran pembuatan paving block, bahkan beberapa penelitian menuturkan kandungan abu ampas tebu yang telah diproses sedemikian rupa mengandung silika yang dapat menggantikan Portland semen. Penelitian ini bertujuan untuk mengoptimalkan potensi tersebut dengan menambahkan atau meracik abu ampas tebu ini ke dalam campran pembuatan paving block. Penelitian ini melewati bebrapa proses antara lain, observasi lapangan, persiapan alat dan bahan, pembuatan sample, hingga pengujia yang ditempuh kurang lebih dalam waktu 3 (tiga) bulan. Hasil penelitian diharapkan dapat menjadi solusi dan edukasi terhadap masyarakat, serta dijadian sebagai bahan ajar atau kajian ulang dimasa mendatang.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Limbah menjadi salah satu masalah yang hadir ditengah-tengah kehidupan manusia. Tak dapat dipungkiri bahwa bahan sisa akan ada disetiap aspek kehidupan. Limbah dari sisa makanan menjadi salah satu penyumbang terbesar saat ini. Dalam kasus ini mengolah limbah menjadi bahan yang baru atau *recycle* sangat dibutuhkan demi keberlangsungan keseimbangan lingkungan.

Salah satu contoh penyumbang limbah adalah dari hasil produksi air tebu, air sari tebu salah satu minuman yang familiar bagi masyarakat diseluruh Indonesia. Maka dari itu limbah ampas hasil penggilingan yang ada dirasa kurang dalam pengolahannya. Kebanyakan ampas tebu ini berakhir begitu saja di tempat pembuangan akhir, ataupun dibakar yang merupakan penyebab potensi pencemaran udara yang berbahaya bagi kehidupan. Dengan banyaknya fenomena yang terjadi menjadi suatu keresahan bagi peneliti untuk menemukan terobosan mengenai pemanfaatan limbah ampas tebu menjadi slaah satu produk melauli rekayasa teknologi bahan, yang diharapkan menjadi solusi bagi masyarakat serta meminimalisir resiko lain yang dapat terjadi, yang akan dikemas dalam suatu penelitian yang berjudul "Optimalisasi Penggunaan Ampas Tebu Sebagai Material Komposit dalam Pembuatan Paving Block Ramah Lingkungan"

Penelitian ini bertujuan untuk meminimalisir dampak pencemaran lingkungan, serta untuk mengetahui kekuatan tekan yang dapat ditahan batu paving block ketika diberikan substitusi abu ampas tebu ke campuran semen. Pemilihan bahan agregat yang terdiri dari ampas tebu ini telah melalui proses *brainstorming*, dimana ampas tebu ini keberadaanya lumayan banyak serta kurang dalam pemanfaatanya. Sehingga bahan ini mudah didapat melihat populasi penjual es tebu di kecamatan Bojonegoro yang dapat mudah ditemui dibebrapa titik kota Bojonegoro. Pemanfaatan limbah ampas tebu untuk saat ini sebagian hanya untuk pupuk stsupun pakan ternak yang faktanya hal ini juga dirasa kurang maksiamal. Kurangnya informasi mengenai kandungan yang ada dalam limbah ampas tebu

yang nyatanya dapat digunakan sebagai bahan campuran produk bangunan misalnya pembuatan komposit, desain produk perlengkapan rumah, beton dan yang lainnya. Kutipan tersebut bukan tanpa dasar, abu ampas tebu memiliki kriteria yang dibutuhkan untuk dijadikan sebagai bahan tambah penguat beton. Diketahui dalam sebuah buku dikatakan bahwa abu ampas tebu memiliki modulus elastis 15-19 GPA dan juga kandungan senyawa kimia Si02 (silika) sebesar 3, 01% yang berfungsi untuk meningkatkan sifat mekanik beton. (Rahim dkk, 2015).

Dipan dan Patel (2015) melalui penelitiannya, menyatakan bahwa serat ampas tebu dengan aspek rasio 30,60, dan 90 serta volume fraksi 0,5%; 1,0%; dan 1,5% terbukti meningkatkan kuat tekan dan kuat lentur beton dibandingkan dengan kuat rencana awal. Peningkatan kuat tekan dan lentur terbesar terjadi pada beton dengan campuran 1, 0% serat tebu serta aspek rasio 90, sehingga dapat dimanfaatkan sebagai bahan campuran beton normal.

Oleh karena itu dari informasin yang kami dapatkan atas kandungan yang ada dalam serat ampas tebu memungkinkan dilakukannya penelitian lebih lanjut dengan menambahkan serat ampas tebu sebagai agregat tambahan dalam pembuatan paving block.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan diatas, maka permasalahan yang akan dibahas pada penelitian ini adalah sebagai berikut :

- 1. Bagaimana cara optimalisasi ampas tebu sehingga dapat dijadikan sebagai campuran mix design pembuatan paving block?
- 2. Apakah penambahan ampas tebu sebagai material komposit dalam campuran mix design paving block dapat menambah kuat tekan?

1.3 Tujuan Penelitian

Dilihat dari rumusan masalah yang akan diteliti oleh peneliti, maka tujuan utama dari dilakukannya penelitian sebagai berikut :

1. Mengoptimalisasi pemanfaatan ampas tebu sebagai Material Komposit dalam Pembuatan Paving Block Ramah Lingkungan

2. Merancang mix design paving block berstubstitusi ampas tebu yang memiliki sifat kuat tekan dan ramah lingkungan

1.4 Manfaat Penelitian

Penelitian ini diharapkan dapat memberi manfaat sebagai berikut :

- 1. Mengurangi jumlah limbah ampas tebu yang dibuang tanpa adanya pengolahan di Kecamatan Bojonegoro, Kabupaten Bojonegoro.
- 2. Mengurangi polusi serta pencemaran yang terjadi akibat limbah ampas tebu.
- 3. Menciptakan inovasi paving block yang memiliki daya tahan terhadap kuat tekan, kuat lentur, serta ramah ligkungan

BAB II

TINJAUAN PUSTAKA

2.1 Pengertian Paving Block

Paving block dapat dikatakan sebagai batu cetak berbentuk tertentu yang digunakan sebagai cover halaman tanpa memakai adukan ataupun perekat dalam pemasangannya. Paving Block sering kali digunakan oleh masyarakat Indonesia sebagai bahan untuk merapikan halaman. Paving block juga familiar digunakan sebagai akses jalan instan, karena pemasangannya yang mudah dan cepat, tanpa memerlukan bahan perekat lain.

Berdasarkan (SNI 03-0691-1996), Paving block merupakan suatu komposisi bahan bangunaan yang dibuat dari campuran portland semen ataupun dari bahan hidrolis sejenisnya, air dan agregat dengan atau tanpa bahan tambahan lain yang tidak mengurangi mutu bata beton itu sendiri.

Pendapat lain paving block adalah batu cetak dengan bentuk tertentu yang dipakai sebagai bahan penutup halaman tanpa memakai aduk pasangan (mortar), pengikatan terjadi diakibatkan masing-msing batu cetak saling terikat satu sama lain, hal ini menyebabkan daya serap air dari tanah dibawahnya tetap terjamin dan kemungkinan menggenangnya air di halaman dapat diminimalisir, Dudung Kusmara (1997) dalam Satya (2002).

2.2 Bahan Penyusun Paving Block

Bahan-bahan pokok penyusun paving block terdiri atas campuran semen, pasir, air dalam proporsi tertentu. Namun beberapa paving block ada pula yang menambahkan bahan tambahan material komposit seperti halnya abu ampas tebu, abu layang, abu sekam padi ataupun material lain untuk menambah kekuatan paving block.

Kekuatan dan mutu paving block tergantung pada kualitas bahan dasar, bahan campuran (*mix design*), proses pembuatan, serta alat yang dipakai. Semakin baik mutu bahan baku, kesesuaian komposisi campuran yang direncanakan dengan baik, proses pencetakan dan pembuatan yang dilaksanakan dengan baik akan

menghasilkan paving block yang berkualitas baik pula. Dalam pembuatan paving blok pada penelitian kali ini setidaknya memerlukan bahan-bahan sebagai berikut

2.2.1 Semen Portland

Menurut (PT. Semen Padang,1995), semen portland merupakan bahan perekat hidrolis yang dihasilkan dari penggilingan klingker dimana kandungan utamanya yakni *calcium silicate* dan satu atau dua buah bentuk *calcium sulfat* sebagai bahan tambahan.

Kegunaan semen sendiri untuk merekatkan butir-butir agregat agar terjadi suatu massa yang kompak atau padat. Perbedaan sifat jenis semen satu dengan yang lainnya dapat terjadi karena perbedaan susunan kimia ataupun tingkat kehalusan butir-butirnya.

Mengacu pada SNI-15-2049-1994 dalam PT. Semen Gresik (2002), semen portland dibagi menjadi 5 jenis yaitu:

- 1. Jenis 1 : semen portland untuk penggunaan umum yang tidak membutuhkan persyaratan khusus seperti pada jenis-jenis lain.
- 2. Jenis 2 : semen portland yang dimana dalam pemanfaatannya memerlukan ketahanan terhadap sulfat dan panas hidrasi sedang.
- 3. Jenis 3 : semen portland yang pemanfaatannya menuntut persyaratan kekuatan awal yang tinggi setelah proses terjadi pengikatan.
- 4. Jenis 4 : semen portland yang dalam pemanfaatannya menuntut persyaratan panas hidrasi yang rendah.
- 5. Jenis 5 : semen portland yang dalam pemanfaatannya menuntut persyaratan sangat tahan terhadap sulfat.

Semen portland terdiri dari kapur oksida (CaO), oksida silika (SiO2), aluminium oksida (Al2O3) dan besi oksida (Fe2O3). Isi untuk empat oksida sampai dengan 95% berat semen dan biasanya disebut "oksida besar" sedangkan 5% sisanya adalah komposit magnesium oksida dan oksida lainnya.

Sifat semen berdasarkan pemakaiannya menurut (PT.Semen Padang, 1995), meliputi:

- Hidrasi Semen, hal ini dimungkinkan jika air ditambahkan ke saluran semen reaksi disebutkan antara partikel semen dan air . Reaksi hidrasi menghasilkan gugus hidrat semen dalam bentuk gel.
- 2. Pengikatan dan Pengerasan, sifat pengikatan pada campuran semen dengan air merujuk pada gejala terbentuknya kekakuan pada adonan. Dalam penerapanya, sifat pengikatan ini diukur dengan waktu pengikatan, yakni durasi yang dihitung dari saat pencampuran adonan sampai tahap adonan mulai mengeras.
- 3. Pengaruh Kualitas Semen pada Kuat Tekan Beton. Makin halus partikel semen akan membuat kuat tekan yang tinggi, karena makin luasnya permukaan yang bereaksi dengan air maupun kontak dengan agregat. Bedasarkan sifat kimia, semakin besar kandungan C3A akan menghasilkan setting time yang pendek, sedangkan makin besar kandungan Gypsum di dalamnya akan menimbulkan setting time yang panjang

2.2.2 Agregat

Agregat merupakan butiran mineral yang dapat digunakan sebagai pengisi dalam campuran mortar atau beton. Agregat menempati sebanyak 70% volume mortar atau beton. Agregat dapat mempengaruhi sifat mortar atau beton, walaupun keberadaanya hanya sebagai pengisi. (Andrias, dkk, 1995:5) mengemukakan bahwa, aregat dalam unsur bangunan beton terdiri dari dua golongan, yaitu agregat anorganik dan agregat organik.

2.2.2.1 Agregat Anorganik

Agregat anorganik merupakan agregat alam atau buatan yang bahan bakunya berasal dari bahan galian. Agregat ini banyak digunakan untuk menghasilkan unsur bangunan beton antara lain:

- Pasir
- Kerikil
- Batu Pecah
- Tras
- Tanah Stabilisasi

- Kuarsa
- Kapur

2.2.2.2 Agregat Organik

Umumnya agregat organik dapat bersumber dari tumbuh-tumbuhan, limbah industri hasil pertanian, serat alam, pengolahan kayu dan lain-lain. Syarat agregat organik sebagai pembuatan komponen bahan bangunan memerlukan pengolahan terlebih dulu yang dinamakan proses mineralisasi. Proses ini penting untuk mengurangi zat ekstraktif seperti selulosa, tannin serta asam organik yang bersumber dari tumbuhan, agar daya lekat dan pengerasan semen dapat terjadi secara maksimal.

Seperti halnya ampas tebu, mengandung zat yang dapat mengganggu pengerasan semen, misalnya gula, tannin, dan asam-asam organic lainnya. Oleh karena itu, sebelum dicampur dengan bahan perekat semen, ampas tebu ataupun perlu diolah terlebih dahulu dengan cara dijadikan abu.

2.2.3 Pasir

(Tjokrodimuljo, 1996). Pasir ialah butiran-butiran mineral yang keras dengan besar butiran antara 0,15 mm sampai 5 mm. Pasir juga dapat berperan sebagai pengikat serta bahan pengisi ruang agar adonan terikat secara maksimal.

Berdasarkan (SK SNI - S - 04 -1989 -F ; 28), terdapat beberapa persyaratan penting untuk pasir yang akan digunakan pada bahan bangunan antara lain:

- Pasir halus sebaiknya terdiri dari butiran dengan tekstur tajam dan keras.
 Agregat Indeks kekerasan untuk jenis pasir ini adalah < 2,2.
- 2. Bila pasir digunakan dengan Natrium Sulfat maka bagian yang hancur maksimal 12%.
- 3. Bila pasir digunakan dengan Magnesium Sulfat maka bagian yang hancurmaksimal 10%.
- 4. Standar pasir tidak boleh didapati kandungan lumpur > 5%, maka harus dilakukan proses pencucian terlebih dulu.

- Tidak boleh mengandung terlalu banyak bahan organis didalam pasir,
 Sebelumnya pasir harus melalui percobaan warna Abrans-Harder menggunakan larutan jenuh NaOH 3%.
- 6. Untuk susunan jenis pasir butir besar diharuskan mempunyai kehalusan modulus 1,5 hingga 3,8. Pasir juga terdiri dari butir-butir yang berbeda
- Pasir memiliki reaksi alkali negatif untuk membuat beton dengan tingkat keawetan yang tinggi.
- 8. Pasir dari laut tidak diperkenankan sebagai agregat halus untuk beton bermutu, kecuali terdapat petunjuk khusus dari lembaga pemerintahan bahan bangunan yang sudah diakui.
- 9. Pasir agregat halus yang akan digunakan untuk spesi terapan serta plasteran harus memenuhi persyaratan dari pasangan terlebih dahulu.

2.2.4 Air

Komponen penting dalam pelaksanaan pembuatan paving block adalah air, karena air diperlukan untuk bereaksi dengan semen sebagai bahan perekat antara pasir, kerikil dan bahan lainnya. Tanpa adanya air maka pencampuran antara bahan satu dan bahan lainya kurang maksimal atau bahkan tidak dapat menyatu sama sekali. Pemberian air dalam mix design juga didapati komposisi agar adonan yang digunakan nantinya tidak terlalu encer atau terlalu keras.

Tidak semua air dapat digunakan dalam pencampuran bahan, sebagaimana yang termuat dalam SKSNI S-04-1989-F, mengenai syarat air yang dapat digunakan antara lain:

- 1. Air bersih tanpa capuran apapun.
- 2. Tidak memiliki kandungan bahan lain seperti halnya lumpur, minyak dan benda terapung lainnya yang dapat diamati secara langsung atau visual.
- 3. Tidak mengandung benda-benda yang tersuspensi lebih dari 2gram/liter.
- 4. Tidak mengandung garam-garam yang dapat larut dan dapat merusak paving blok (asam-asam, zat organik dan sebagainya) dengan kadar lebih dari 15 gram/liter. Kandungan klorida (Cl), tidak >500 ppm dan senyawa sulfat tidak >1000 ppm sebagai SO3.

- 5. Bila dibandingkan dengan kekuatan tekan adukan dan bata beton yang menggunakan air suling, maka penurunan kekuatan adukan dan bata beton yang memakai air yang diperiksa tidak >10%.
- 6. Semua air yang mutunya meragukan harus dianalisa secara kimia dan dievaluasi mutunya bedasarkan penggunaannya.
- 7. Khusus pada beton pratekan, kecuali syarat-syarat tersebut diatas tidak boleh mengandung klorida >500 ppm.

2.2.5 Abu Ampas Tebu

Abu ampas tebu merupakan bahan sisa pembakaran dari serat batang tebu yang telah diekstraksi niranya dengan jaringan parenkim yang lembut serta mempunyai level higroskopis tinggi yang dihasilkan dari penggilingan tebu.

Karena ampas tebu adalah hasil dari proses penggilingan cairan tebu dapat menghasilkan sekitar 35-40% dari berat tebu yang digiling. Berdasarkan (Penebar Swadaya,2000), umumnya tebu dapat menghasilkan 24-36% ampas tebu (baggase) dan ampas tebu sendiri mengandung air sebanyak 48-52%, guls 2.5-6%, serat 44-48%. Abu ampas tebu terdiri dari bahan inorganik yang dapat ditemui di dalam ampas tebu yang telah mengalami fusi selama pembakarannya. Bahan ini memadat selama berada di dalam gas-gas buangan dan dikumpulkan pada lahan pembuangan.

2.2.5.1 Kandungan Abu Ampas Tebu

(Pranowo, Suryani, & Rahmadhani, 2022). Limbah ampas tebu merupakan salah satu material yang dapat dimanfaatkan sebagai pengganti semen karena mengandung sifat sebagai pozzolan, dan berdasarkan penelitian (Koi, Rosidi, & Wijaya 2019) limbah ampas tebu mengandung SiO2, Al2O3, Fe2O3, CaO, K2O, Na2O, MgO dan P2O5 yang dapat menambah kekuatan paving block karena butirannya sangat kecil sehingga mampu mengisi lubang pori pada paving block.

Tabel 2. 1 Sifat Fisik Abu Ampas Tebu Yang Telah Dibakar Ulang Pada Suhu300°C, 400°C, 500°C Selama 2Jam.

No.	Sifat Fisik	Data Yang Ada		
1.	Berat Jenis	300°C	4,347 gr/cm ³	
		400°C	2,499 gr/cm ³	
		500°C	2,0 gr/cm ³	
2.	Warna	Hitam Keabu-Abuan		
3.	Kehalusan	Butir lolos ukuran sarigan 150µm		

2.2.5.2 Abu Ampas Tebu Sebagai Campuran Mix Design Paving Block

Bedasarkan penelitian, Adiguna & Wahyudi (2020) mengenai "Pemanfaatan Abu Ampas Tebu Limbah Pabrik Gula Cinta Manis Kabupaten Ogan Ilir Sebagai Additive Beton", menyatakan bahwa hasil dari uji labor yang dilaksanakan didapatkan hasil bahwa substitusi abu ampas tebu (AAT) sebanyak 5%, dapat menambah kuat tekan beton tersebut 6,43 % lebih tinggi dari kuat tekan beton normalnya.

Dipan dan Patel (2015), dalam penelitianya menyatakan bahwa serat ampas tebu dengan aspek rasio 30,60, dan 90 serta volume fraksi 0,5%; 1,0%; dan 1,5% terbukti meningkatkan kuat tekan dan kuat lentur beton dibandingkan dengan kuat rencana awal. Peningkatan kuat tekan dan lentur terbesar terjadi pada beton dengan campuran 1, 0% serat tebu serta aspek rasio 90, sehingga dapat dimanfaatkan sebagai bahan tambah dalam campuran beton normal

2.3 Syarat Mutu Paving Block

Syarat mutu paving blok tertuai pada SNI-03-0691-1996, tedapat beberapa point diantaranya:

- Bata beton diharuskan memiliki permukaan yang datar, tidak terdapat retakretak ataupun cacat pada bagian sudut dan rusuknya tidak mudah dihancurkan dengan kekuatan jari tangan.
- Bata beton memiliki ukuran tebal nominal 60 mm dengan toleransi + 8%.

- Bata beton apabila diuji tidak boleh cacat, dan kehilangan berat yang diperkenankan maksimum 1%
- Bata beton untuk lantai harus mempunyai kekuatan fisika, yang tertera pada table sebagai berikut:

Tabel 2. 2 sifat-Sifat Fisika Paving Block

Mutu	Kuat Tekan		Ketaha	nan Aus	Penyerapan	
	(M	(pa)	(mm/	menit)	Air Rata-	
					Rata Maks.	
	Rerata	Minimum	Rerata	Minmum	%	
A	40	35	0,009	0,103	3	
В	20	17	0,130	0,149	6	
С	15	12,5	0,160	0,184	8	
D	10	8,5	0,219	0,251	10	

Sumber: SNI 03-0691-1996

2.4 Klasifikasi Paving Block

Didalam SNI-03-0691-1996 dijelaskan mengenai Klasifikasi paving block, yang dimana tertuang sebagai berikut :

- Bata beton mutu A digunakan untuk jalan.
- Bata beton mutu B digunakan untuk peralatan parkir.
- Bata beton mutu C digunakan untuk pejalan kaki.
- Bata beton mutu D digunakan untuk taman dan penggunaan lain.

2.5 Penelitian Terdahulu

No.	Peneliti	Tahun	Judul	Tujuan	Hasil	
1.	Bachrul Ulum, &	2021	Pengaruh Penggunaan Abu	Tujuan penelitian ini yaitu	Hasil penelitian menunjukkan adanya	
	Muhammad		Ampas Tebu Sebagai Bahan	mengetahui pengaruh	pengaruh penggunaan variasi abu ampas	
	Imaduddin		Substitusi Sebagian Semen	penggunaan abu ampas tebu	tebu dan 10% bottom ash terhadap mutu	
			Pada Campuran Paving Block	sebagai bahan substitusi	paving block. Semakin banyak	
			Dengan Tambahan Bottom	sebagian semen pada	penggunaan abu ampas tebu	
			Ash 10 % Sebagai Bahan	campuran paving block	menyebabkan paving block mengalami	
			Substitusi Pasir	dengan tambahan bottom ash	penurunan nilai kuat tekan, peningkatan	
				10% sebagai bahan substitusi	nilai penyerapan air, dan peningkatan nilai	
				pasir terhadap kuat tekan,	ketahanan aus. Pada campuran normal	
				penyerapan air dan ketahanan	menunjukkan hasil uji kuat tekan sebesar	
				aus yang sesuai dengan SNI	26,327 MPa, penyerapan air sebesar	
				03-0691-1996.	4,035%, dan ketahanan aus sebesar 0,094	
					mm/menit. Pada campuran 5% abu ampas	
					dan 10% bottom ash mengalami	
					penurunan kuat tekan dari campuran	
					normal sebesar 39,1% dengan nilai kuat	
					tekan sebesar 16,033 MPa. Nilai	

					penyerapan air meningkat dari campuran
					normal sebesar 60,1% dengan nilai
					penyerapan air sebesar 6,46%. Sedangkan
					nilai ketahanan aus mengalami
					peningkatan dari campuran normal
					sebesar 8,5% dengan nilai ketahanan aus
					sebesar 0,102 mm/menit.
2.	Adiguna & Agus	2020	Pemanfaatan Abu Ampas	Tujuan penetian ini adalah	Hasil dari uji labor yang dilaksanakan
	Wahyudi		Tebu Limbah Pabrik Gula	memanfaatkan limbah ampas	didapatkan hasil bahwa penambahan
			Cinta Manis Kabupaten Ogan	tebu yang dihalikan oleh PT.	Abu Ampas Tebu (AAT) sebanyak 5 %
			Ilir Sebagai Additive Beton	Cinta Manis dalam sekala	dapat menambah kuat tekan beton tersebut
				besar, untuk dijadikan bahan	6,43 % lebih tinggi dari kuat tekan
				campuran dalam pembuatan	beton normalnya. Namun penambahan
				paving block	AAT yang lebih besar dari 5 % terhadap
					semen dalam beton tersebut justru
					menurunkan kualitas kuat tekan
					betonnya. Hal ini berarti jumlah kadar
					5 % AAT dapat dimanfaatkan untuk
					peningkatan kuat tekan beton

3.	Sugiyatno	2020	Karakteristik Paving Block	Penelitian ini bertujuan untuk	Hasil penelitian diperoleh kuat tekan
			Dengan Penambahan Filler	mengetahui karakteristik	paving normal 16,04 MPa, nilai absorbsi
			Limbah Marmer Dan Fiber	paving normal (campuran 1	7,01% dan kuat kejut 59,595 joule.
			Serat Strapping Band	semen : 8 pasir). Paving	Penambahan filler dan atau tanpa fiber
				normal ditambah filler 10%,	cenderung tidak meningkatan kuat tekan,
				20%, 30%, paving normal	bahkan jika prosentase filler lebih besar
				ditambah fiber	dari 20% atau fiber lebih dari 0,5% kuat
				0,25%,0,5%,0,75%, dan	tekan akan turun. Pada pengujian beban
				paving normal ditambah filler	kejut, penambahan filler tidak
				20% dan fiber	berpengaruh terhadap kuat kejut, namun
				0,25%,0,5%,0,75%	pada penambahan fiber dapat
					meningkatkat kuat kejut sampai 516 %
					pada proporsi fiber 0,5%. Pada kombinasi
					filler 20% dan fiber 0,75% ketahanan
					kejut meningkat 357 %. Nilai absorbsi
					cenderung turun pada penambahan filer,
					namun akan meningkat apabila
					ditambahkan fiber.

4.	Helgananta Adirya	2023	Optimalisasi Abu Ampas	Tujuan penelitian ini adalah	Hasil pengujian menunjukkan mutu
	Sabian, Mutiara		Tebu untuk Produksi Paving	mengevaluasi penggunaan	batako yang paling tinggi terdapat pada
	Rengganis Nurul		Block	abu ampas tebu sebagai	pengeringan hari ke 7 yaitu sebesar 214
	Putri Azhari,			substitusi semen dalam paving	kg/cm2 mendapatkan mutu B berdasarkan
	Maktum Muharja			block. Fokus pada komposisi	SNI 03-0691-1996 dan kuat tekan batako
				optimal (10%, 20%, 30%),	yang dihasilkan akan semakin meningkat
				kekuatan tekan sesuai standar	seiring bertambahnya waktu pengeringan
				SNI, dan waktu pengeringan	
				efektif. Penelitian ini	
				bertujuan mengurangi limbah	
				industri gula dan menciptakan	
				peluang bisnis baru.	
5.	Vidya Yolanda	2018	Penentuan Komposisi Abu	Penelitian ini bertujuan untuk	meliputi penyerapan air, massa total
			Ampas Tebu Dan Kerikil	memperoleh komposisi abu	bahan, dan biaya pembuatan paving block.
			Pada Pembuatan Beton	ampas tebu dan kerikil dengan	Hasil penelitian menunjukkan bahwa
			Paving Block	mengetahui penyerapan air,	perlakuan penambahan abu ampas tebu
				massa total bahan, dan biaya	dan kerikil berpengaruh nyata terhadap
				pembuatan paving block	penyerapan air dan massa total bahan.
					Paving block perlakuan terbaik

	berdasarkan penyerapan air dan massa
	total bahan adalah pada perlakuan A9,
	dengan komposisi abu ampas tebu 10%,
	semen 25%, pasir 25%, dan kerikil 40%.
	Penyerapan air pada perlakuan A9 sebesar
	9,82 %. Massa total bahan pada perlakuan
	A9 sebesar 3061,9 g. Penggantian
	sebagian semen berupa abu ampas tebu
	dapat mengurangi biaya semen sebesar
	15,6%. Berdasarkan SNI 03-0691-1996
	tentang mutu beton, hasil penelitian ini
	memenuhi syarat dengan nilai rata-rata
	10% penyerapan air tergolong dalam
	beton dengan mutu D yakni beton yang
	dapat digunakan untuk lantai taman dan
	penggunaan lain.

BAB 3

METODE PENELITIAN

3.1 Ruang Lingkup Penelitian

Adapun ruang lingkup penelitian terletak di Kecamatan Bojonegoro, dengan mengacu beberapa titik lokasi yang berpotensi menghasilkan limbah ampas tebu, dimana dalam kasus ini kami bekerja sama dengan beberapa pedagang es tebu yang tersebar di Kecamatan Bojonegoro.

Lokasi pengujian sample uji terletak di Laboratorium Teknik Sipil, Universitas Bojonegoro, yang terletak di Desa Kalirejo, Kecamatan Bojonegoro, Kabupaten Bojonegoro, Jawa Timur. Yang mana dalam loaksi tersebut dilaksanakan mulai dari Analisa alat dan bahan, pembuatan, serta pada tahap pengujian akan dilakukan di lokasi tersebut.

3.2 Analisa Data

Terdapat beberapa jenis data yang diperlukan dalam pelaksanaan penelitian yang terbagi atas dua jenis, yakni data primer dan data sekunder sebagai berikut:

3.2.1 Data Primer

Data primer dalam penelitian ini meliputi Abu ampas tebu, data observasi ampas tebu, data bahan material pembuatan paving block, dan kuat tekan yang diperoleh dari pengujian laboratorium.

3.2.2 Data Sekunder

Untuk data sekunder didapat dari referensi buku yang mengacu pada SNI ASTM C136:2012 yang membahas pengujian analisa saringan/Modulus Halus Butur (MHB) agregat halus, SNI 03-4804-1998 yang membahas pengujian berat volume gembur dan volume padat agregat halus, 03-4142-1996 yang membahas uji kandungan lumpur dalam pasir, SNI 7394-2008 yang membahas komposisi campuran paving block, SNI – 03-0691-1996 yang membahas mengenai standar mutu paving block dan SK SNI T04-1990-F yang membahas mengenai klasifikasi

paving block serta dari referensi penelitian-penelitian yang berhubungan dengan pembuatan paving block.

3.4 Pembuatan Sample

Pada tahap ini akan dilakukan pembuatan sample dimana juga harus melewati berbagai proses baik persiapan hingga perawatan saat sample uji (paving block) telah jadi.

Pelaksanaan Penelitian Beton yang akan dirancang menurut komposisi material tertentu. Apabila pelaksanaannya tidak dilakukan dengan baik maka kekuatan rencana beton akan sulit untuk dicapai. Oleh karena itu perlu diperhatikan prosedur pelaksanaan perancangan beton seperti yang diuraikan berikut

3.4.1 Persiapan Bahan dan Alat

Bahan yang digunakan dalam penelitian ini meliputi pasir, kerikil, semen, air, dan bahan tambahan abu ampas tebu. Semua bahan-bahan tersebut kecuali air harus diperoleh dari luar karena tidak tersedia di laboratorium. Peralatan yang digunakan dalam penelitian ini adalah:

- 1. Wadah.
- 2. Alat pengaduk beton (cetok).
- 3. Cetakan benda uji dan alat-alat bantu lain untuk pencetakan dan pemadatan benda uji.
- 4. Mesin uji tekan.
- 5. Timbangan.
- 6. Ayakan.
- 7. Oven.
- 8. Talam untuk wadah beton segar

3.4.2 Pembuatan Sample Paving Block

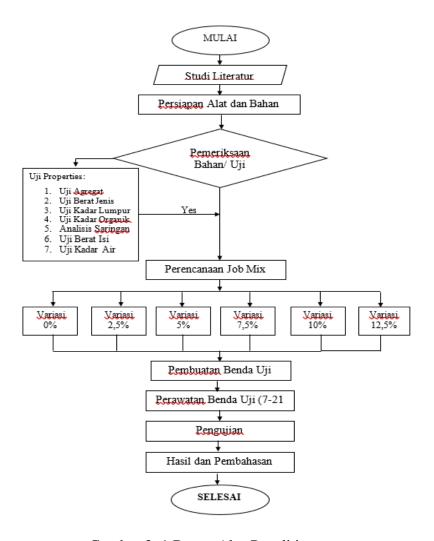
Setelah persiapan alat dan bahan untuk pembuatan sample ini dibuat dengan ukuran 21 cm x 10,5 cm x 6 cm dengan penumbukan secara manual. Pembuatan benda uji paving block menggunakan perbandingan semen: pasir = 1:5, sedangkan abu ampas tebu yang digunakan sebagai bahan pengganti sebagian pasir memakai

proporsi campuran 0%, 2.5%, 5%, 7.5%, 10% dan 12.5% terhadap volume pasir. Dimana jumlah pada setiap variasi 6 buah pada setiap umurnya.

Berikut merupakan langkah-langkah pembuatan paving yang terdiri atas langkah-langkah atau prosedur antara lain sebagai berikut:

- 1. Bahan-bahan dan alat-alat yang diperlukan untuk pembuatan paving block dipersiapkan terlebih dahulu.
- 2. Bahan-bahan yang diperlukan dimasukkan ke dalam wadah adukan, berturut-turut, pasir, semen dan abu ampas tebu.
- 3. Kemudian dilakukan pengadukan bahan-bahan tersebut agar campurannya merata.
- 4. Setelah tercampur rata diberi air sesuai dengan jumlah yang direncanakan, Penambahan air dilakukan bertahap yaitu sedikit demi sedikit, lalu adukan diulangi dan ditambahkan sisa air dan bahan tambahan yang sebelumnya sudah diencerkan terlebih dahulu dengan air. Harus diingat bahwa jumlah air dan bahan tambah adalah dalam jumlah yang telah direncanakan.
- Setelah adukan merata diisikan kedalam cetakan, sebelumnya cetakan diolesi dengan oli dulu (supaya mudah dilepas kembali) dan cetakan harus terikat rapat.
- 6. Setelah semua cetakan terisi penuh, permukaannya diratakan dan disimpan diruangan dengan suhu normal.
- 7. Setelah itu dikeringkan selama 7 hari,14 hari dan 21 hari dengan cahaya matahari langsung dan melakukan penyemprotan setiap jam 12 jam sekali.

3.5 Pengujian Sample


Pada pelaksanaan pengujian ini mesti diperhatikan kesiapan dari alat-alat yang akan digunakan dan juga kesiapan dari operator yang akan mengoperasikan alat-alat tersebut agar pelaksanaan pengujian dapat berjalan sesuai dengan rencana. Jumlah personel yang terlibat minimal 2 orang, masing-masing mempunyai tugas masing-masing. Satu orang sebagai pengatur kerja mesin sekahgus sebagai pembaca jarum penunjuk beban maksimal dan seorang mencatat hasil pembacaan tersebut.

Hal penting yang harus diperhatikan dalam tahap pengujian adalah perlu adanya penimbangan sample agar data yang diperoleh lebih akurat.

Langkah-langkah yang dilakukan untuk pengujian desak ini adalah sebagai berikut:

- Benda uji diletakkan dalam posisi tegak lurus dengan bidang rata padamesin tekan. Sebelumnya permukaan dari benda uji harus rata, karena halini dapat mengakibatkan kekurang telitian pada saat pengujian.
- 2. Kecepatan penekanan adalah 160 kg/cm2/detik Pada saat keruntuhan tercapai kecepatan penekanan ditingkatkan ± 2 sampai 4 kg/cm2/detik.

3.6 Bagan Alur

Gambar 3. 1 Bagan Alur Penelitian

BAB 4 HASIL DAN PEMBAHASAN

Pada bab ini terdapat penjelasan mengenai hasil serta pembahasan hasil analisa dari penelitian yang telah dilakukan. Pengujian bahan (Uji Properties) serta pengujian kuat tekan dilaksanakan di Labotarium Teknik Sipil Universitas Bojonegoro.

4.1 Uji Properties Agregat Halus

Agregat halus yang digunakan pada penelitian ini adalah pasir lokal asli Bojonegoro yang di dapatkan di salah satu took material yang ada. Dimana pasir tersebut perlu diuji terlebih dahulu untuk menentukan apakah agregat halus jenis ini sudah layak digunakan dalam pembuatan paving.

4.1.1 Pengujian Kadar Lumpur Agregat Halus

Kadar lumpur pada agregat halus yang akan digunakan dalam pembuatan paving ini sama dengan beton yang tidak boleh dari 5% (SK SNI S 04-1989-F). Apabila kadar lumpur pada agregat halus terlalu banyak, hal tersebut akan berpengaruh dalam kekuatan serta ketahanan paving.

Berikut hasil pengujian kadar lumpur agregat halus yang digunakan dalam penelitian ini disajikan dalam tabel berikut :

Tabel 4. 1 Hasil Pengujian Kadar Lumpur Agregat Halus

No. Sampel	Ukuran Maksimum Agregat		Satuan
	I	II	
Berat Kering Benda Uji + Wadah W1	1089.00	1115.00	Gram
Berat Wadah W2	89.00	115.00	Gram
Berat Kering Benda Uji Awal W3 = W1 – W2	1000	1000	Gram
Berat Kering Benda Uji Sesudah Pencucian + Wadah W4	1078.00	1103.00	Gram
Berat Kering Benda Uji Sesudah Pencucian W5 = W4 – W2	989.00	988.00	Gram

Persen Bahan Lolos Saringan No. 200 (0.075 mm)	1.11	1.21	%
$W6 = \frac{(W3 - W5)}{W5} X 100\%$			
Rata – Rata	1.	16	%

Dari hasil perhitungan diatas di dapatkan nilai rata-rata dari 2 sampel uji pada pengujian lumpur sebesar 1.16% dan menurut SNI yang dijelaskan diatas dinyatakan agregat halus lolos dan layak digunakan sebagai bahan pembuatan sampel.

4.1.2 Hasil Pengujian Kadar Organik

Berdasarkan SNI 03-2816-1992, pengujian kadar organik bertujuan sebagai pedoman untuk menentukan kelayakan pasir alam yang akan digunakan dalam campuran mortar atau beton. Proses pengujian dilakukan dengan memasukkan agregat halus ke dalam tabung gelas ukur hingga mencapai skala 130 ml, kemudian menambahkan larutan NaOH hingga volume mencapai 200 ml. Setelah itu, tabung ditutup dan dikocok memutar sebanyak 25 kali dengan gerakan angka 8, kemudian dibiarkan selama 24 jam. Setelah didiamkan, kadar organik agregat halus akan terlihat pada kolom warna kuning tua (standar nomor 3). Kadar organik yang dapat digunakan berkisar antara nomor 1 hingga nomor 3. Jika kadar organik melebihi nomor 3, agregat halus tersebut tidak dapat digunakan dalam campuran pembuatan paving.

Tabel 4. 2 Hasil Pengujian Kadar Organik Agregat Halus

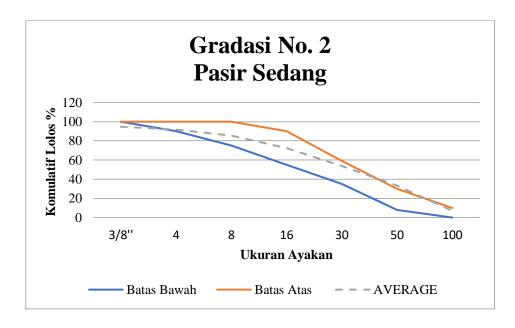
A consect Desire	No.	No. Contoh			
Agregat Pasir	Ι	II	Satuan		
Tinggi Pasir	130	130	ml		
Penambahan Cairan NaOH	200	200	ml		
Warna setelah dicampur 1 x 24 jam	Kuni				
Kartu warna No.		2			

Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

Gambar 4. 1 Hasil Uji Kadar Organik Pasir Lokal

Dari hasil pengujian kadar organik pada agregat halus di dapatkan hasil bahwa kadar organik berada pada nomer 2 dengan warna kuning muda dan dapat dikatakan bahwa agregat halus dapat digunakan dalam pembuatan sampel.

4.1.3 Hasil Pengujian Perhitungan Analisa Ayakan Agregat Halus


Analisa ayakan agregat adalah proses untuk menentukan persentase berat butiran agregat yang lolos dari serangkaian saringan, sesuai dengan standar SNI 03-1968-1990. Pada pengujian analisa saringan untuk agregat halus ini, digunakan dua sampel dengan setiap sampel menggunakan 2500 kg agregat halus, serta beberapa saringan dengan nomor 3/8", 4, 8, 16, 30, 50, 100, dan PAN. Berikut adalah hasil pengujian analisis ayakan untuk agregat halus dapat dilihat pada tabel 4.3 dibawah ini:

Tabel 4. 3 Hasil Pengujian Analisa Ayakan Agregat Halus

UKU: AYA!		SAMPEL - 1			SAMPEL - 2				Rata-	
(mm)	No.	Berat	Berat Komulatif	Tertahan (%)	Lolos %	Berat	Berat Komulatif	Tertahan (%)	Lolos %	rata
9,60	3/8"	113	113	4.54	95.46	149	149	5.97	94.03	94.75
4,80	4	86	199	7.99	92.01	55	204	8.17	91.83	91.92
2,40	8	185	384	15.42	84.58	143	347	13.90	86.10	85.34
1,20	16	302	686	27.54	72.46	335	682	27.31	72.69	72.57

0,60	30	477	1163	46.69	53.31	458	1140	45.65	54.35	53.83
0.3	50	504	1667	66.92	33.08	517	1657	66.36	33.64	33.36
0,15	100	674	2341	93.98	6.02	636	2293	91.83	8.17	7.10
PAN	PAN	150	2491	100.00	0.00	204	2497	100.00	0.00	0.00
TOTA	L	2491				2497				

Hasil pengujian tersebut digunakan sebagai pedoman untuk menentukan daerah gradasi agregat halus. Analisa ayakan agregat halus pada penelitian ini termasuk dalam gradasi zona 2 dengan Fine Modulus sebesar 2,56. Untuk data serta grafik gradasi hasil pengujian analisa agregat halus dapat dilihat pada gambar 4.2 dibawah ini :

Gambar 4. 2 Grafik Gradasi No. 2 (Pasir Sedang)

Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

4.1.4 Hasil Pengujian Berat Jenis dan Penyerapan Air Agregat Halus

Pengujian berat jenis dan penyerapan air pada agregat halus adalah perbandingan antara berat suatu material per satuan volume dengan berat air pada volume yang sama pada suhu yang telah ditetapkan.

Berikut hasil pengujian berat jenis dan penyerapan agregat halus yang dapat dilihat pada tabel 4.4 dibawah ini :

Tabel 4. 4 Hasil Pengujian Berat Jenis Dan Penyerapan Agregat Halus

Pengujian Penyerapan Air Agregat Halus	A	В	С	Satuan
Berat benda uji kering permukaan jenuh (SSD)	500.00	500.00	500.00	Gram
Berat benda uji kering - oven, Bk	496.00	488.00	496.00	Gram
Berat piknometer diisi air, (25°)B	685.00	692.00	688.00	Gram
Berat piknometer + benda uji (SSD) + air, (25°) Bt	971.00	949.00	975.00	Gram
Kadar Air		1.36		%
Perhitungan	A	В	C	Rata - Rata
Berat Jenis (Bulk) $\frac{Bk}{(B+500-Bt)}$	2.32	2.01	2.33	2.22
Berat jenis kering permukaan jenuh 500 (B+500 – Bt)	2.34	2.06	2.35	2.25
Berat jenis semu (apparent) $\frac{Bk}{(B+Bk-Bt)}$	2.36	2.11	2.37	2.28
Penyerapan $\frac{500 - Bk}{Bk} \times 100 \%$	0.81	2.46	0.81	1.36

Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

Bedasarkan hasil pengujian berat jenis dan penyerapan air pada agregat halus yang dipakai memiliki berat jenis (bulk) sebesar 2,22 dan memiliki penyerapan (*absorption*) sebesar 1.36 %.

4.1.5 Hasil Pengujian Barat Isi Lepas Gembur Dan Padat Agregat Halus

Pengujian berat isi agregat halus dilakukan dengan dua cara yaitu berat isi agregat halus pada kondisi gembur serta berat isi agregat halus pada kondisi padat.

Setiap pengujian menggunakan dua sampel. Hasil dari pengujian berat isi agregat halus dapat dilihat pada Tabel 4.5 serta Tabel 4.6

Tabel 4. 5 Berat Isi Lepas Gembur Agregat Halus

LEPAS / GEMBUR		I	II	
A. Berat tempat + benda uji	(kg)	4771	4801	
B. Berat tempat	(kg)	957	957	
C. Berat benda uji	(kg)	3814	3844	
D. Isi tempat	(dm^3)	3989	3989	
E. Berat isi benda uji	(kg/dm^3)	0.96	0.96	
F. Berat isi benda uji rata - rata	(kg/dm³)	0.96		

Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

Tabel 4. 6 Berat Isi Padat Agregat Halus

PADAT		I	II
A. Berat tempat + benda uji	(kg)	5262	5289
B. Berat tempat	(kg)	957	957
C. Berat benda uji	(kg)	4305	4332
D. Isi tempat	(dm^3)	3989	3989
E. Berat isi benda uji	(kg/dm^3)	1.08 1.09	
F. Berat isi benda uji rata - rata	(kg/dm^3)	1.08	

Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

4.1.6 Hasil Pengujian Kadar Air Agregat Halus

Pengujian kadar air pada agregat halus dilakukan untuk menentukan persentase kandungan air yang terdapat dalam agregat. Persentase ini diperoleh dari perbandingan antara berat air yang ada dalam agregat dengan berat agregat dalam kondisi kering. Hasil pengujian kadar air pada agregat halus disajikan dalam tabel 4.7 dan 4.8 dibawah ini :

Tabel 4. 7 Hasil Kadar Air Agregat Halus Asli SNI 03-1971-1990

ASLI								
Nomor Cawan	24	17	66					
Berat Cawan	14.49	14.42	14.92					
Berat Cawan + Sample Basah	42.05	45.01	46.68					
Berat Cawan + Sample Kering	41.46	44.67	46.01					
Berat Sample Basah	27.56	30.59	31.76					

Berat Sample Kering	26.97	30.25	31.09	
Kadar Air	2.19%	1.12%	2.16%	
Rata-rata	1.82%			

Tabel 4. 8 Hasil Kadar Air Agregat Halus SSD SNI 03-1971-1990

SSD									
Nomor Cawan	4	31	60						
Berat Cawan	14.22	14.42	14.77						
Berat Cawan + Sample Basah	53.42	56.93	54.81						
Berat Cawan + Sample Kering	52.73	55.75	54.25						
Berat Sample Basah	39.2	42.51	40.04						
Berat Sample Kering	38.51	41.33	39.48						
Kadar Air	1.79%	2.9%	1.42%						
Rata-rata 2.02%									

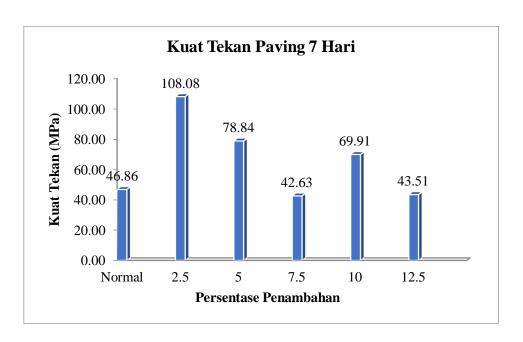
Sumber: Uji Labotarium Teknik Sipil Universitas Bojonegoro 2024

4.2 Hasil Uji Kuat Tekan

Pengujian kuat tekan paving dilakukan saat benda uji paving pada umur 7, 14 dan 21 hari dengan jumlah 6 buah pada setiap variasi. Pengujian paving dilakukan di Labotarium Teknik Sipil Universitas Bojonegoro. Berikut hasil pengujian kuat tekan paving pada umur 7, 14, dan 21 hari yang dapat dilihat pada tabel berikut ini:

Tabel 4. 9 Hasil Pengujian Kuat Tekan Benda Uji Umur 7 Hari

Nama Sampel	Kode Sampel	Berat	Volume B	Berat Jenis A :B	Kuat Tekan	Faktor Koreksi Benda Uji	Konversi Nilai Umur
	1	1.913	1323	1445.96	31.212	1.060	50.900
	2	1.945	1323	1470.14	34.285	1.060	55.911
Ma man a l	3	1.901	1323	1436.89	22.355	1.060	36.456
Normal	4	1.970	1323	1489.04	26.175	1.060	42.685
	5	1.980	1323	1496.6	24.560	1.060	40.052
	6	1.939	1323	1465.61	33.818	1.060	55.149
	1	2.166	1323	1637.19	54.696	1.060	89.197
2.5	2	2.065	1323	1560.85	77.108	1.060	125.745
2.5	3	2.167	1323	1637.94	39.789	1.060	64.887
	4	2.148	1323	1623.58	119.738	1.060	195.265


	_	2.250	1222	1700 (0	77.146	1.000	125.007
	5	2.250	1323	1700.68	77.146	1.060	125.807
	6	1.931	1323	1459.56	29.185	1.060	47.594
	1	2.015	1323	1523.05	54.697	1.060	89.198
	2	1.950	1323	1473.92	37.818	1.060	61.672
5	3	2.111	1323	1595.62	69.267	1.060	112.958
3	4	2.139	1323	1616.78	54.025	1.060	88.102
	5	2.164	1323	1635.68	31.244	1.060	50.952
	6	2.171	1323	1640.97	43.003	1.060	70.128
	1	1.913	1323	1445.96	24.654	1.060	40.205
	2	1.815	1323	1371.88	50.021	1.060	81.573
7.5	3	1.930	1323	1458.81	27.287	1.060	44.499
7.3	4	1.730	1323	1307.63	19.164	1.060	31.252
	5	1.783	1323	1347.69	19.676	1.060	32.087
	6	1.710	1323	1292.52	16.031	1.060	26.143
	1	2.003	1323	1513.98	43.514	1.060	70.961
	2	1.762	1323	1331.82	29.699	1.060	48.432
10	3	1.903	1323	1438.4	43.319	1.060	70.643
10	4	1.953	1323	1476.19	40.792	1.060	66.522
	5	1.967	1323	1486.77	61.203	1.060	99.808
	6	1.793	1323	1355.25	38.704	1.060	63.117
	1	1.801	1323	1361.3	22.058	1.060	35.972
12.5	2	1.788	1323	1351.47	23.623	1.060	38.524
	3	1.633	1323	1234.32	21.488	1.060	35.042
	4	1.975	1323	1492.82	40.635	1.060	66.266
	5	1.863	1323	1408.16	45.514	1.060	48.245
	6	1.718	1323	1298.56	22.688	1.060	36.999

Bedasarkan hasil dari tabel 4.9 yang ada diatas maka di dapatkan rata-rata kuat tekan paving pada umur 7 hari dapat dilihat pada tabel 4.10 dibawah ini :

Tabel 4. 10 Rata-rata Kuat Tekan Paving Block Pada Umur 7 Hari

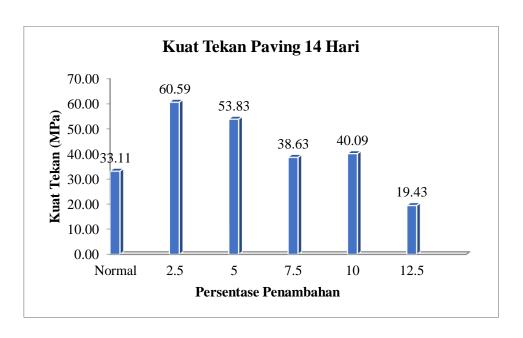
Nama Sampel	Kode Sampel	Kuat Tekan (Kg/Cm ²)	Rata- Rata
Normal	1	50.900	46.859
	2	55.911	
	3	36.456	
	4	42.685	

	5	40.052		
	6	55.149		
	1	89.197		
	2	125.745		
2.5	3	64.887	108.082	
2.3	4	195.265	100.002	
	5	125.807		
	6	47.594		
	1	89.198		
	2	61.672		
5	3	112.958	78.835	
3	4	88.102	10.033	
	5	50.952		
	6	70.128		
	1	40.205		
	2	81.573		
7.5	3	44.499	12 626	
7.3	4	31.252	42.626	
	5	32.087		
	6	26.143		
	1	70.961		
	2	48.432		
10	3	70.643	69.914	
10	4	66.522	09.914	
	5	99.808		
	6	63.117		
12.5	1	35.972		
	2	38.524		
	3	35.042	43.508	
12.5	4	66.266	45.308	
	5	48.245		
	6	36.999		
	'1 0' '1 T	T ' '/ T	•	

Gambar 4. 3 Grafik Kuat Tekan Paving Umur 7 Hari

Dari hasil pengujian kuat tekan paving umur 7 hari pada tabel 4.10 dan Gambar 4.3 dapat dilihat bahwa Variasi 0% (paving normal) memiliki nilai kuat tekan rata – rata 46.86 Kg/Cm², variasi 2.5% memiliki nilai kuat tekan rata – rata 108.08 Kg/Cm², variasi 5% memiliki nilai kuat tekan rata – rata 78.84 Kg/Cm², variasi 7.5% memiliki nilai kuat tekan rata – rata 42.63 Kg/Cm², variasi 10% memiliki nilai kuat tekan rata – rata 69.91 Kg/Cm², dan variasi 12.5% memiliki nilai kuat tekan rata – rata 43.51 Kg/Cm². Dapat diketahui bahwa kuat tekan paving tertinggi di dapatkan pada variasi 2.5% dimana mencapai nilai 108.08 Kg/Cm².

Tabel 4. 11 Hasil Pengujian Kuat Tekan Benda Uji Umur 14 Hari


Nama Kode Sampel Sampel	Berat	Volume	Berat Jenis	Kuat Tekan	Faktor Koreksi	Konversi Nilai Umur	
Samper	Samper	A	В	A :B	Tekan	Benda Uji	Tildi Ollai
	1	1.915	1323	1447.47	23.851	1.060	28.730
	2	2.039	1323	1541.19	34.967	1.060	42.119
Normal	3	1.916	1323	1448.22	37.592	1.060	39.848
Normai	4	1.927	1323	1456.54	26.628	1.060	32.075
	5	1.971	1323	1489.8	30.567	1.060	36.819
	6	1.962	1323	1482.99	15.844	1.060	19.085
2.5	1	1.901	1323	1436.89	19.999	1.060	24.090
2.5	2	2.182	1323	1649.28	93.232	1.060	112.302

		1.010	1000	1 1 1 2 . 60	20.260	1.0.50	25.255
-	3	1.910	1323	1443.69	29.360	1.060	35.365
_	4	1.894	1323	1431.59	21.543	1.060	25.950
	5	2.130	1323	1609.98	74.770	1.060	90.064
	6	1.195	1323	903.25	62.908	1.060	75.776
	1	1.995	1323	1507.94	55.512	1.060	66.867
	2	1.943	1323	1468.63	38.117	1.060	45.914
5	3	1.717	1323	1297.81	25.051	1.060	30.175
3	4	2.006	1323	1516.25	49.546	1.060	59.680
	5	1.868	1323	1411.94	60.697	1.060	73.112
	6	1.942	1323	1467.88	39.216	1.060	47.237
	1	1.758	1323	1328.8	25.138	1.060	30.280
	2	1.612	1323	1218.44	21.342	1.060	25.707
7.5	3	1.846	1323	1395.31	35.843	1.060	43.175
7.3	4	1.738	1323	1313.68	45.260	1.060	54.518
	5	1.950	1323	1473.92	43.630	1.060	52.554
	6	1.781	1323	1346.18	21.199	1.060	25.535
	1	1.845	1323	1394.56	34.693	1.060	41.789
	2	1.851	1323	1399.09	34.242	1.060	41.246
10	3	1.765	1323	1334.09	21.826	1.060	26.290
10	4	1.744	1323	1318.22	30.562	1.060	36.813
	5	1.820	1323	1375.66	41.023	1.060	49.414
	6	1.738	1323	1313.68	37.359	1.060	45.001
	1	1.805	1323	1364.32	13.772	1.060	16.589
	2	1.727	1323	1305.37	12.039	1.060	14.502
12.5	3	1.704	1323	1287.98	19.968	1.060	24.052
12.3	4	1.762	1323	1331.82	16.634	1.060	20.036
	5	1.840	1323	1390.78	20.208	1.060	24.341
	6	1.875	1323	1417.23	14.163	1.060	17.060

Tabel 4. 12 Rata-rata Kuat Tekan Paving Block Pada Umur 14 Hari

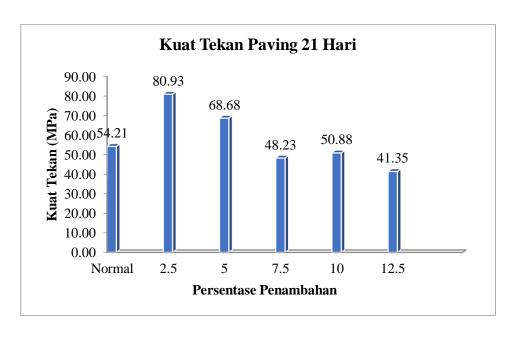
Nama Sampel	Kode Sampel	Kuat Tekan (Kg/Cm2)	Rata- Rata
	1	28.730	
	2	42.119	
Normal	3	39.848	33.11
	4	32.075	
	5	36.819	

1 24.090 2 112.302 3 35.365 4 25.950 5 90.064 6 75.776 1 66.867 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589 2 14.502		6	10.005		
2 112.302 3 35.365 4 25.950 5 90.064 6 75.776 1 66.867 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		6	19.085		
2.5 3 35.365 60.59 5 90.064 6 75.776 1 66.867 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589					
2.5 4 25.950 60.59 5 90.064 6 75.776 1 66.867 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 6 47.237 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589					
4 25.950 5 90.064 6 75.776 1 66.867 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589	2.5	3	35.365	60.59	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3		25.950	00.57	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	90.064		
5 2 45.914 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		6	75.776		
5 3 30.175 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		1	66.867		
5 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		2	45.914		
7.5 4 59.680 5 73.112 6 47.237 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589	5	3	30.175	52.92	
7.5 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589	3	4	59.680	33.63	
7.5 1 30.280 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		5	73.112		
7.5 2 25.707 3 43.175 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		6	47.237		
7.5 3		1	30.280		
7.5 4 54.518 5 52.554 6 25.535 1 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		2	25.707		
10	7.5	3	43.175	20 62	
10	7.3	4	54.518	38.63	
10 41.789 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		5	52.554		
10 2 41.246 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		6	25.535		
10 3 26.290 4 36.813 5 49.414 6 45.001 1 16.589		1	41.789		
4 36.813 5 49.414 6 45.001 1 16.589		2	41.246		
4 36.813 5 49.414 6 45.001 1 16.589	10	3	26.290	40.00	
6 45.001 1 16.589	10	4	36.813	40.09	
1 16.589		5	49.414		
		6	45.001		
2 14.502	10.5	1	16.589		
1 1		2	14.502		
3 24.052		3	24.052	10.42	
12.5 4 20.036 19.43	12.5	4	20.036	19.43	
5 24.341		5	24.341		
6 17.060		6	17.060		

Gambar 4. 4 Grafik Kuat Tekan Paving Umur 14 Hari

Dari hasil pengujian kuat tekan paving umur 14 hari pada tabel 4.12 dan Gambar 4.4 dapat dilihat bahwa Variasi 0% (paving normal) memiliki nilai kuat tekan rata – rata 33.11 Kg/Cm², variasi 2.5% memiliki nilai kuat tekan rata – rata 60.59 Kg/Cm², variasi 5% memiliki nilai kuat tekan rata – rata 53.83 Kg/Cm², variasi 7.5% memiliki nilai kuat tekan rata – rata 38.63 Kg/Cm², variasi 10% memiliki nilai kuat tekan rata – rata 40.09 Kg/Cm², dan variasi 12.5% memiliki nilai kuat tekan rata – rata 19.43 Kg/Cm². Dapat diketahui bahwa kuat tekan paving tertinggi di dapatkan pada variasi 2.5% dimana mencapai nilai 60.59 Kg/Cm².

Tabel 4. 13 Hasil Pengujian Kuat Tekan Benda Uji Umur 21 Hari


Nama Kode Sampel Sampel	Berat	Volume	Berat Jenis	Kuat Tekan	Faktor Koreksi	Konversi Nilai Umur	
Samper	Samper	A	В	A :B	Texan	Benda Uji	Tillai Olliui
	1	2.074	1323	1567.65	42.252	1.060	47.144
	2	2.138	1323	1616.02	20.434	1.060	22.800
Normal	3	1.904	1323	1439.15	43.146	1.060	48.142
Normai	4	1.902	1323	1437.64	27.089	1.060	30.226
	5	1.906	1323	1440.67	33.157	1.060	36.996
	6	1.977	1323	1494.33	125.435	1.060	139.959
2.5	1	2.283	1323	1725.62	104.014	1.060	116.058
2.5	2	2.141	1323	1618.29	53.370	1.060	59.550

	3	1.885	1323	1424.79	39.190	1.060	43.728
	4	2.005	1323	1515.5	93.597	1.060	104.435
	5	2.089	1323	1578.99	84.965	1.060	94.803
	6	2.043	1323	1544.22	60.041	1.060	66.993
	1	1.967	1323	1486.77	58.404	1.060	65.167
	2	1.951	1323	1474.68	68.434	1.060	76.358
5	3	1.907	1323	1441.42	59.097	1.060	65.940
3	4	2.048	1323	1548	58.348	1.060	65.104
	5	2.006	1323	1516.25	64.615	1.060	72.097
	6	1.853	1323	1400.6	60.435	1.060	67.433
	1	1.735	1323	1311.41	47.102	1.060	52.556
	2	1.938	1323	1464.85	71.165	1.060	79.405
7.5	3	2.005	1323	1515.5	24.351	1.060	27.171
7.5	4	1.613	1323	1219.2	26.814	1.060	29.919
	5	1.748	1323	1321.24	29.601	1.060	33.028
	6	1.722	1323	1301.59	60.335	1.060	67.321
	1	1.925	1323	1455.03	48.157	1.060	53.733
	2	1.904	1323	1439.15	50.062	1.060	55.859
10	3	1.828	1323	1381.71	44.025	1.060	49.123
10	4	1.789	1323	1352.23	44.646	1.060	49.816
	5	1.851	1323	1399.09	45.855	1.060	51.165
	6	1.883	1323	1423.28	40.853	1.060	45.583
	1	1.874	1323	1416.48	36.723	1.060	40.975
12.5	2	1.720	1323	1300.08	34.776	1.060	38.803
	3	1.892	1323	1430.08	48.773	1.060	54.420
	4	1.643	1323	1241.87	25.348	1.060	28.283
	5	1.950	1323	1473.92	50.081	1.060	53.086
	6	1.743	1323	1317.46	29.150	1.060	32.525

Tabel 4. 14 Rata-rata Kuat Tekan Paving Block Pada Umur 21 Hari

Nama Sampel	Kode Sampel	Kuat Tekan (Kg/Cm2)	Rata- Rata
	1	47.144	
	2	22.800	
Normal	3	48.142	54.21
	4	30.226	
	5	36.996	

	6	139.959	
	1	116.058	
	2	59.550	
2.5	3	43.728	80.93
2.3	4	104.435	60.93
	5	94.803	
	6	66.993	
	1	65.167	
	2	76.358	
_	3	65.940	68.68
5	4	65.104	08.08
	5	72.097	
	6	67.433	
	1	52.556	
	2	79.405	48.23
7.5	3	27.171	
7.3	4	29.919	
	5	33.028	
	6	67.321	
	1	53.733	
	2	55.859	
10	3	49.123	50.88
10	4	49.816	30.88
	5	51.165	
	6	45.583	
10.5	1	40.975	
	2	38.803	
	3	54.420	41.25
12.5	4	28.283	41.35
	5	53.086	
	6	32.525	
·	'1 0' '1 T		•

Gambar 4. 5 Grafik Kuat Tekan Paving Umur 21 Hari

Dari hasil pengujian kuat tekan paving umur 21 hari pada tabel 4.14 dan Gambar 4.5 dapat dilihat bahwa Variasi 0% (paving normal) memiliki nilai kuat tekan rata – rata 54.21 Kg/Cm², variasi 2.5% memiliki nilai kuat tekan rata – rata 80.93 Kg/Cm², variasi 5% memiliki nilai kuat tekan rata – rata 68.68 Kg/Cm², variasi 7.5% memiliki nilai kuat tekan rata – rata 48.23 Kg/Cm², variasi 10% memiliki nilai kuat tekan rata – rata 50.88 Kg/Cm², dan variasi 12.5% memiliki nilai kuat tekan rata – rata 41.35 Kg/Cm². Dapat diketahui bahwa kuat tekan paving tertinggi di dapatkan pada variasi 2.5% dimana mencapai nilai 80.93 Kg/Cm².

4.3 Perhitungan Hasil Mutu Paving Block

Berikut merupakan hasil mutu dari penambahan abu ampas tebu pada paving block pada setiap umurnya yang dapat dilihat pada tabel 4.15, 4.16 dan 4.17 yang ada dibawah ini :

Tabel 4. 15 Hasil Mutu Paving Umur 7 Hari

Nama Sampel	Kode Sampel	Kuat Tekan (Kg/Cm2)	Rata- Rata	Mutu
	1	50.900		
Normal	2	55.911	46.86	K- 47
	3	36.456		

4 42.685 5 40.052 6 55.149 1 89.197 2 125.745 3 64.887 4 195.265 5 125.807 6 47.594 1 89.198 2 61.672 3 112.958 4 88.102 5 50.952 6 70.128 1 40.205 2 81.573 3 44.499 4 31.252 5 32.087 6 26.143 1 70.961 2 48.432 5 99.808 6 63.117 1 35.972 2 38.524 1 35.972 2 38.524 4 66.266 5 48.245 6 36.999					
1 89.197 2 125.745 3 64.887 4 195.265 5 125.807 6 47.594 1 89.198 2 61.672 3 112.958 4 88.102 5 50.952 6 70.128 1 40.205 2 81.573 3 44.499 4 31.252 5 32.087 6 26.143 10 10 10 10 10 10 10 10 10 10 10 10 10		4	42.685		
2.5 1		5	40.052		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	55.149		
2.5		1	89.197		
2.5		2	125.745		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	3	64.887	100.00	V 100
6 47.594 1 89.198 2 61.672 3 112.958 4 88.102 5 50.952 6 70.128 1 40.205 2 81.573 3 44.499 4 31.252 5 32.087 6 26.143 1 70.961 2 48.432 3 70.643 4 66.522 5 99.808 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245 K-44	2.3	4	195.265	108.08	K-108
1 89.198 2 61.672 3 112.958 4 88.102 5 50.952 6 70.128 1 40.205 2 81.573 3 44.499 4 31.252 5 32.087 6 26.143 1 70.961 2 48.432 3 70.643 4 66.522 5 99.808 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245		5	125.807		
5 2 61.672 3 112.958 78.84 K-79 4 88.102 5 50.952 K-79 6 70.128 70.128 70.128 K-43 7.5 3 44.499 42.63 K-43 4 31.252 5 32.087 K-43 6 26.143 1 70.961 </td <td></td> <td>6</td> <td>47.594</td> <td></td> <td></td>		6	47.594		
5 3 112.958 78.84 K-79 4 88.102 78.84 K-79 5 50.952 K-70.128 K-70 1 40.205 40.205 40.205 K-43 2 81.573 44.499 42.63 K-43 4 31.252 K-43 K-43 5 32.087 60.261 K-43 1 70.961 70.961 K-70 2 48.432 48.432 49.91 K-70 5 99.808 60.522 60.91 K-70 1 35.972 2 38.524 3 35.042 43.51 K-44 4 66.266 5 48.245		1	89.198		
3 4 88.102 78.84 K-79 5 50.952 6 70.128 1 40.205 2 81.573 3 44.499 42.63 K-43 4 31.252 5 32.087 6 26.143 1 70.961 2 48.432 3 70.643 66.522 69.91 K-70 5 99.808 6 63.117 63.117 1 35.972 2 38.524 3 35.042 43.51 K-44 12.5 4 66.266 5 48.245		2	61.672		
7.5	_	3	112.958	70.04	V 70
7.5 1	3	4	88.102	/8.84	K-/9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	50.952		
7.5 2 81.573 3 44.499 4 31.252 5 32.087 6 26.143 1 70.961 2 48.432 3 70.643 4 66.522 5 99.808 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245 K-43 K-43 K-43 K-43 K-43 K-44		6	70.128		
7.5 3		1	40.205	42.63	V 42
10		2	81.573		
10	7.5	3	44.499		
10	7.5	4	31.252		K-43
10 70.961 2 48.432 3 70.643 4 66.522 5 99.808 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245 K-70 K-70 K-70 K-70		5	32.087		
10		6	26.143		
10		1	70.961		
10 4 66.522 69.91 K-70 5 99.808 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245 K-44		2	48.432		
12.5	10	3	70.643	CO 01	W 70
12.5 6 63.117 1 35.972 2 38.524 3 35.042 4 66.266 5 48.245 43.51 K-44	10	4	66.522	09.91	K-/0
1 35.972 2 38.524 3 35.042 4 66.266 5 48.245		5	99.808		
12.5 2 38.524 3 35.042 4 66.266 5 48.245 K-44		6	63.117		
12.5 3 35.042 43.51 K-44 5 48.245	12.5	1	35.972		
12.5 4 66.266 5 48.245 K-44		2	38.524		
4 66.266 5 48.245		3	35.042	12 51	IZ 4.4
		4	66.266	45.51	N -44
6 36.999		5	48.245		
		6	36.999		

Sumber: Uji Labotarium Teknik Sipil 2024

Tabel 4. 16 Hasil Mutu Paving Umur 14 Hari

Nama Sampel	Kode Sampel	Kuat Tekan (Kg/Cm2)	Rata- Rata	Mutu
	1	28.730		
	2	42.119		
)	3	39.848	22.11	17. 00
Normal	4	32.075	33.11	K- 33
	5	36.819		
	6	19.085		
	1	24.090		
	2	112.302		
2.5	3	35.365	60.50	IZ 61
2.5	4	25.950	60.59	K-61
	5	90.064		
	6	75.776		
	1	66.867		
	2	45.914		K-54
_	3	30.175	53.83	
5	4	59.680		
	5	73.112		
	6	47.237		
	1	30.280		И 20
	2	25.707		
7.5	3	43.175	20.62	
7.3	4	54.518	38.63	K-39
	5	52.554		
	6	25.535		
	1	41.789		
	2	41.246		
10	3	26.290	40.09	K-40
10	4	36.813	4 0.09	IX-4U
12.5	5	49.414		
	6	45.001		
	1	16.589		
	2	14.502		
	3	24.052	19.43	K-20
	4	20.036		
	5	24.341		

|--|

Sumber: Uji Labotarium Teknik Sipil 2024

Tabel 4. 17 Hasil Mutu Paving Umur 21 Hari

		Vnot		
Nama	Kode	Kuat Tekan	Rata-	Mutu
Sampel	Sampel	(Kg/Cm2)	Rata	Mutu
	1	47.144		V. 54
	2	22.800		
NI 1	3	48.142	54.01	
Normal	4	30.226	54.21	K- 54
	5	36.996		
	6	139.959		
	1	116.058		
	2	59.550		
2.5	3	43.728	80.93	K-81
2.3	4	104.435	60.93	K-01
	5	94.803		
	6	66.993		
	1	65.167		
	2	76.358		K-69
5	3	65.940	68.68	
3	4	65.104	00.00	K-09
	5	72.097		
	6	67.433		
	1	52.556		
	2	79.405		
7.5	3	27.171	48.23	K-48
7.5	4	29.919	46.23	K-40
	5	33.028		
	6	67.321		
	1	53.733		
	2	55.859		
10	3	49.123	50.88	K-51
10	4	49.816	30.00	IX-31
	5	51.165		
	6	45.583		
12.5	1	40.975	41.25	K-41
12.3	2	38.803	41.35	

3	54.420
4	28.283
5	53.086
6	32.525

Sumber: Uji Labotarium Teknik Sipil 2024

4.4 Analisis Hasil Uji

Berdasarkan hasil uji kuat tekan paving dan pembahasan dapat dianalisis dan diambil kesimpulan sebagai berikut :

1. Hasil Analisis Variasi Terhadap Pengurangan Pasir Lokal

a. Paving variasi 0% (Paving Normal)

Dari hasil uji kuat tekan paving dengan campuran normal untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 46.86 Kg/cm², umur 14 hari kuat tekan rata-rata sebesar 33.11 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 54.21 Kg/cm².

b. Paving variasi 2.5 %

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 2.5% untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 108.08 Kg/cm², umur 14 hari kuat tekan rata-rata sebesar 60.59 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 80.93 Kg/cm².

c. Paving variasi 5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 5% untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 78.84 Kg/cm², umur 14 hari kuat tekan rata-rata sebesar 53.83 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 68.68 Kg/cm².

d. Paving variasi 7.5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 7.5% untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 42.63 Kg/cm², umur 14 hari

kuat tekan rata-rata sebesar 38.63 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 48.23 Kg/cm².

e. Paving variasi 10%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 10% untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 69.91 Kg/cm², umur 14 hari kuat tekan rata-rata sebesar 40.09 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 50.88 Kg/cm².

f. Paving variasi 12.5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 12.5% untuk 6 sampel benda uji ditemukan kuat tekan paving untuk umur 7 hari kuat tekan rata-rata sebesar 43.51 Kg/cm², umur 14 hari kuat tekan rata-rata sebesar 19.43 Kg/cm², dan untuk umur 21 hari rata-rata sebesar 41.35 Kg/cm².

2. Hasil Kuat Tekan Paving Block Umur 7, 14, dan 21 Hari

Dari hasil pengujian kuat tekan paving block ampas tebu umur 7 hari, 14 hari, 21 hari, dengan enam variasi 0% (normal), 2,5%, 5%, 7,5%, 10%, 12,5%. Dimana hasil uji pada hari ke-7 menghasilkan nilai 0% sebesar 46,86 kg/cm2, 2,5% menghasilkan nilai 108,08 kg/cm2, 5% menghasilkan nilai 78,84 kg/cm2, 7,5% menghasilkan nilai 42,63 kg/cm2, 10% menghasilkan nilai 69,91 kg/cm2, dan 12,5% menghasilkan nilai 43,51 kg/cm2.

Kemudian pada sampel uji umur 14 hari menghasilkan nilai pada 0% sebesar 33,11kg/cm2, 2,5% menghasilkan nilai 60,59kg/cm2, 5% menghasilkan nilai 53,83 kg/cm2, 7,5% menghasilkan nilai 38,63kg/cm2, 10% menghasilkan nilai 40,09kg/cm2, dan 12,5% menghasilkan nilai 19,43kg/cm2.

Disisi lain sampel umur menghasilkan nilai 0% sebesar 54,21kg/cm2, 2,5% menghasilkan nilai 80,93kg/cm2, 5% menghasilkan nilai 68,68kg/cm2, 7,5% menghasilkan nilai 48,23 kg/cm2, 10%

menghasilkan nilai 50,88kg/cm2, dan 12,5% menghasilkan nilai 41,35 kg/cm2.

Dari hasil data tersebut dapat dilihat melalui grafik gambar 4.3, 4.4, 4.5, dimana nilai kuat tekan tertinggi didapat oleh variasi 2,5%. Grafik menunjukan kesamaan diagram batang dimana nilai kuat tekan mengalami peningkatan setelah variasi normal, kemudian pada variasi 5% mengalami penurunan hingga variasi 7,5%, kemudian pada variasi 10% mengalami kenaikan lagi yang kemudian terjadi penurunan yang paling rendah di variasi 12,5%.

3. Hasil Klasifikasi Mutu Paving

a. Paving variasi 0% (Paving Normal)

Dari hasil uji kuat tekan paving dengan campuran normal untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 47, umur 14 hari tergolong mutu K- 33, dan untuk umur 21 hari tergolong mutu K- 54

b. Paving variasi 2.5 %

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 2.5% untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 108, umur 14 hari tergolong mutu K- 61, dan untuk umur 21 hari tergolong mutu K- 81

c. Paving variasi 5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 5% untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 79, umur 14 hari tergolong mutu K- 54, dan untuk umur 21 hari tergolong mutu K- 69

d. Paving variasi 7.5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 7.5% untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 43, umur 14 hari tergolong mutu K- 39, dan untuk umur 21 hari tergolong mutu K- 48

e. Paving variasi 10%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 10% untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 70, umur 14 hari tergolong mutu K- 40, dan untuk umur 21 hari tergolong mutu K- 51

f. Paving variasi 12.5%

Dari hasil uji kuat tekan paving dengan campuran ampas tebu sebesar 12.5% untuk 6 sampel benda uji didapatkan klasifikasi mutu paving untuk umur 7 hari tergolong mutu K- 44, umur 14 hari tergolong mutu K- 20, dan untuk umur 21 hari tergolong mutu K- 41

BAB V

KESIMPULAN

5.1 Kesimpulan

Berdasarkan hasil penelitian dan pembahasan yang di lakukan terhadap kuat tekan diperoleh beberapa kesimpulan sebagai berikut:

- 1. Dari hasil pengujian kuat tekan umur 7 hari dari 6 variasi didapat nilai kaut tekan rata-rata 64,97 kg/cm2. Pada umur 14 hari dari 6 variasi didapat nilai kuat tekan rata-rata sebesar 40,94 kg/cm2. Pada umur 21 hari dari 6 Variasi didapat nilai kuat tekan rata-rata sebesar 57,38 kg/cm2. Dari hasil ini didapatkan umur 7 hari memilki nilai kuat tekan paling tinggi.
- 2. Rata-rata nilai kuat tekan pada variasi 0% adalah 44,72 kg/cm2, 2,5% adalah 83,2 kg/cm2, 5% adalah 67,11 kg/cm2, 7,5% adalah 43,16 kg/cm2, 10% adalah 53,63 kg/cm2, 12,5% adalah 34,76 kg/cm2. Dari hasil ini didapatkan variasi 2,5% memilki nilai kuat tekan paling tinggi.

Dari hasil kesimpulan berdasarkan umur dan variasi dapat disimpulkan bahwa paving dengan kuat tekan terbaik dihasilkan dari variasi yang rendah dengan umur yang rendah juga. Hal ini dapat dikatakan bahwa itensitas matahari serta konsistensi perawatan pasca cetak menjadi hal yang penting dalam menciptakan paving block yang kuat terhadap tekan.

5.2 Saran

Dalam sebuah peelitian tidak ada yang sempurna. Saran diperlukan guna memperbaiki atau sebagai penyempurna. Dalam penelitian ini dituliskan saran sebagai berikut:

- Penelitian ini menggunakan cara manual dalam kegiatan mencetak sampel, sehingga kepadatannya kurang maksimal dibanding dengan mesin hidrolis, jadi untuk penelitian selanjutnya diharapkan menggunakan alat agar sampel yang dihasilkan jauh lebih baik.
- 2. Perawatan serta itensitas cahaya matahari menjadi penentu juga, peneliti harus telaten dan konsisten dalam perawatan paving blok stelah dicetak.

DAFTAR PUSTAKA

- Adiguna, A., & Wahyudi, A. (2020). Pemanfaatan Abu Ampas Tebu Limbah Pabrik Gula Cinta Manis Kabupaten Ogan Ilir Sebagai Additive Beton. Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 17(1), 46-54.
- Andrias,dkk. 1996. Pengembangan Teknologi Pengolahan Serbuk Gergaji Sebagai Bahan Pengisi Pada Pembuatan Bata Cetak. Balai Industri Ujung Pandang.
- Anonim. 1995. Teknologi dan Pembuatan Semen. Padang: PT Semen Padang.
- Anonim.1989. Bata Beton Untuk Lantai (SNI-03-0691-1989). Bandung. Yayasan Lembaga Pendidikan Masalah Bangunan. Departemen Pekerjaan Umum
- Anonim.2002. Jenis Semen dan Penggunaanya. Yogyakarta: PT. Semen Gresik.
- Badan Standarisasi Nasional (BSN), 1996, Bata Beton (Paving block), Indonesia, SNI 03-0691-1996
- Muharja, M., Sabian, H. A., & Azhari, M. R. N. P. (2023). Optimalisasi Pemanfaatan Abu Ampas Tebu Untuk Pembuatan Paving Block. *Journal of Biobased Chemicals*, *3*(2), 118-123.
- Satya, M. 2002. Pengaruh Subtitusi Abu Sekam Padi Terhadap Kuat Tekan Paving Block. Skripsi. Semarang: Universitas Negeri Semarang.
- Standar Nasional Indonesia, 1996, Bata Beton (Paving Block), SNI 03-0691-1996, Dewan Standarisasi Nasional – DSN. 5 Halaman.
- Sugiyatno, S. (2020). Karakteristik Paving Block dengan Penambahan Filler Limbah Marmer dan Fiber Serat Strapping Band. Seminar Nasional Teknik Sipil X 2020.
- Tjokrodimuljo K.1996. Teknologi Beton. Yogyakarta. Naviri
- Ulum, B., & Imaduddin, M. (2021). Pengaruh Penggunaan Abu Ampas Tebu Sebagai Bahan Substitusi Sebagian Semen Pada Campuran Paving Block Dengan Tambahan Bottom Ash 10% Sebagai Bahan Substitusi Pasir.

Vidya Yolanda (2018). Penentuan Komposisi Abu Ampas Tebu Dan Kerikil Pada Pembuatan Beton Paving Block.